DENISON HYDRAULICS Directional Control Valve Cetop 03

Series 4D01 - Design B

Publ. 4-EN 3060-B, replaces 4-EN 3060-A

FEATURES

- Low pressure drop at high flow rates, due to optimized flow paths in body and spool design.
- Mounting configuration conform to ISO 4401.
- Wide variety of spool types available, including detent.
- Interchangeability of spools and bodies due to high precision manufacturing processes.
- Position control by inductive detector (see pages 12... 15).
- Soft shift version available.
- Low electrical power consumption (31 W / 24 VDC).
- Change of solenoid coil is fast and simple without risk of oil leakage.
- Pressure up to 210 bar (DC) / 140 bar (AC) allowable in the tank port.
- Electrical connection by standard 3 pin connector according to ISO 4400 or DIN 43650.
- All components designed and tested for a minimum life of 10 million cycles.
- Every valve is factory tested prior to delivery.
- Worldwide DENISON Service.

DESCRIPTION

OPERATION

ORIFICE

Model No.:

Series

$01=$ Cetop 03
2 Body
$3=$ Standard
$\mathrm{F}=$ only for spools 55,56
3 Control
$1=1$ solenoid
$2=2$ solenoids
$7=2$ solenoids, 2 pos. detents (only for spools $11,12,51,52 \& 91$)

4 Spool Type
refer to pages 5 and 6
5 Spool Position
$01=2(\mathrm{a}, \mathrm{b})$, Spring offset to pos. "b", energized to "a" $02=2(a, b)$, Spring offset to pos. "a", energized to "b" $03=3(a, o, b)$, Spring centered pos. "o"
$05=2(\mathrm{o}, \mathrm{b})$, Spring centered pos. " o ", energized to "b"
$06=2(\mathrm{o}, \mathrm{a})$, Spring centered pos. "o", energized to "a" $09=2$ pos. detents (for control option 7)

6 End Cap
$01=$ for control 1
$02=$ for controls 2,7
Versions with inductive detector:
$S A=$ for control 1: neutral position controlled
$S B=$ for control 1: "a" or "b" position controlled $\}$
TC = for control 2: "a" or "b" position controlled
SC = for control 2: "b" or "a" position controlled
TA $=$ for control 2: " 0 " position controlled
For AC \& DC sol. (see page $12+13$)

For DC sol. only (see page $14+15$)
SA = for control 2: "o" position controlled

-1 -B

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Seal Class
------ -
$1=$ NBR-seals (Standard)
4 = EPDM-seals
$5=$ FPM-seals (Viton ${ }^{\text {® }}$)
9 Solenoid Voltage
$\mathrm{W} 01=115 \mathrm{~V} / 60 \mathrm{~Hz}$
$W 02=230 \mathrm{~V} / 60 \mathrm{~Hz}$
$\mathrm{~W} 06=115 \mathrm{~V} / 50 \mathrm{~Hz}$
$W 07=230 \mathrm{~V} / 50 \mathrm{~Hz}$
Order information for plug-in connectors see pages 9 or 10
Valve Accessories / Modifications
$08=$ Orifice 0.8 mm dia. in P-port
$10=$ Orifice 1.0 mm dia. in P-port
12 = Orifice 1.2 mm dia. in P-port
$32=$ Tube cartridge without manual override
$52=$ Tube cartridge with manual override and rubber cover
G3 $=$ Tube cartridge with manual override and soft shift orifice (only for DC version) - see page 11

Model no.:

Series

$01=$ Cetop 03
2 Body
$3=$ Standard
$\mathrm{F}=$ only for spools 55,56
3 Control
4 = Lever operated
$5=$ Cam operated
D = Pneumatic operation, one-side
$E=$ Pneumatic operation, both-sides
F = Pneumatic operation, both-sides (2 pos. det.)
$Q=$ Hydraulic operation, one-side
R = Hydraulic operation, both-sides
$\mathrm{S}=$ Hydraulic operation, both sides (2 pos. det.)
4 Spool Type
refer to pages 5 and 6
5 Spool Position
$01=2(a, b)$, Spring offset to pos. "b", activated to "a"
$02=2(a, b)$, Spring offset to pos. "a", activated to "b"
$03=3(a, o, b)$, Spring centering pos. " o "
$05=2(0, b)$, Spring centering pos. "o", activated to "b"
$06=2(0, a)$, Spring centering pos. " o ", activated to "a"
$07=3$ pos. detents (for control 4)
$09=2$ pos. detents (for control 4)
6 End Cap
$01=$ for controls \bar{D} and \bar{Q}
$02=$ for controls E, F, R and S
$04=$ for controls 4 and 5
$05=$ for control 4 and spool pos. 07 and 09
7 Design Letter
Seal Class
\qquad
8
1 = NBR-seals (Standard)
$4=$ EPDM-seals
$5=$ FPM-seals (Viton ${ }^{\circledR}$)
Valve Accessories / Modifications
$10=$ orifice 1.0 mm in P
$12=$ orifice 1.2 mm in P

Spool position 06

Spring centering

- standard spools
- transfer configuration only (not switched position)
Spool position 05
Spring centering

- 01

- 07

09
10

- 46

55

65

OX

(1) 2-Solenoid operation
(2) pneumatic operation, both sides
(3) hydraulic operation, both sides
(4) Lever operation

Spool position 02

Spring offset

- 51

81 有:

oy

Spool position 03
Spring centering

Spool position 07

- standard spools
- transfer configuration only (not switched position)

The functional limits have been obtained with warm solenoid condition and at 10% undervoltage.
All flow data given is considered as 2 flow directions (e. g. $\mathrm{P} \rightarrow \mathrm{B}$ and simultaneously from $A \rightarrow T$).
For only one flow direction (4-Way-Valve used as 3-Way-Valve) the permissible flow rates will be lower.

Spool type	DC Curve no.	AC Curve no.
$\begin{aligned} & 01 \\ & 02 \\ & 03 \end{aligned}$	$\begin{aligned} & 4 \\ & 9 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \\ & 2 \end{aligned}$
$\begin{aligned} & 07 \\ & 08 \\ & 09 \end{aligned}$	$\begin{array}{r} 5 \\ 7 \\ 10 \end{array}$	$\begin{aligned} & 3 \\ & 2 \\ & 7 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & \left.12^{1}\right) \end{aligned}$	$\begin{aligned} & 10 \\ & 2(1) \\ & 6(8) \end{aligned}$	7 1 (1) 5 (9)
$\begin{aligned} & 46 \\ & 51 \\ & 52 \end{aligned}$	3 2 (1) 6 (8)	4 2 (1) 5 (9)
$\begin{aligned} & 55 \\ & 56 \\ & 64 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 5 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 3 \end{aligned}$
$\begin{aligned} & 65 \\ & 81 \\ & 91 \end{aligned}$	$\begin{gathered} 5 \\ 3 \\ (1) \end{gathered}$	$\begin{gathered} 3 \\ 1 \\ (1) \end{gathered}$
$\begin{aligned} & O C \\ & O Y \\ & O X \end{aligned}$	$\begin{array}{r} 1 \\ 11 \\ 11 \end{array}$	$\begin{aligned} & 1 \\ & 8 \\ & 8 \end{aligned}$

() Curves for spool with detents
${ }^{1}$) Only if port A or B is closed

PRESSURE DROP

Oil temperature $50^{\circ} \mathrm{C}$; oil viscosity 40 cSt .

	Spool type																				
	01	02	03	07	08	09	10	11	12	46	51	52	55	56	64	65	81	91	OC	OY	OX
$\mathrm{P} \rightarrow \mathrm{A}$	a	e	d	1	d	C	C	C	h	a	e	f	g	g	h	1	b	i	k	a	b
$\mathrm{P} \rightarrow \mathrm{B}$	a	e	d	I	d	c	c	c	h	a	e	f	g	g	1	h	b	i	k	a	b
$\mathrm{P} \rightarrow \mathrm{T}$	b	-	-	i	-	-	-	-	-	-	-	-	-	-	k	k	-	-	k	-	-
A \rightarrow T	c	c	d	1	a	e	a	d	-	g	g	-	f	-	k	I	e	d	-	e	c
$B \rightarrow T$	C	C	d	1	b	a	e	d	-	g	g	-	-	f	1	k	e	d	-	e	C

CHARACTERISTICS

- Design
- Type of mounting
- Mounting position
- Ambient temperature range
- Operating pressure (P, A, B)
- Max. flow
- Fluid
- Viscosity range
- Fluid temperature range
- Contamination level

Sliding spool valve
Subplate
Optional but horizontal optimal
$-20 \ldots+50^{\circ} \mathrm{C}$
up to 350 bar
$80 \mathrm{I} / \mathrm{min}$ (see diagrams)
Mineral oil according to DIN 51524 and 51525 (For other fluids please consult DENISON)
$10 \ldots 650 \mathrm{cSt}$, optimal 30 cSt
$-18 \ldots+80^{\circ} \mathrm{C}$
Max. permissible contamination level according to NAS 1638 Class 8 (Class 9 for 15 Micron and smaller) or ISO 17/14

Plug-in connectors according to ISO 4400

Port function
$\mathrm{P}=$ Pressure
$\mathrm{T}=$ Tank
$A+B=$ User

NBR-Seals for ports P, A, B, T

9.25×1.78	$691-00012-0$

- Nominal voltage
- Power input
- Permissible pressure T
- Holding
- Inrush
- Solenoid response time
- sol. energized
- sol. de-energized
- Permissible voltage difference
- max. coil temperature
- Temperature class
- Relative operating period
- Type of protection
- Cycle (1/H)
- Weight 1 sol.

2 sol.

See ordering code page 3
31 W
.... 140 bar
78 VA
264 VA
... 20 ms
$\ldots 18 \mathrm{~ms}$
$+5 \ldots-10 \%$
$+180^{\circ} \mathrm{C}$
H
100 \%
IP 65
...7.200
1.5 kg
1.8 kg

Port function

$\mathrm{P}=$ Pressure
$\mathrm{T}=$ Tank
$A+B=$ User

NBR-Seals for ports P, A, B, T

9.25×1.78	$691-00012-0$

Plug-in connectors according to ISO 4400

DENISON offers the Directional Control Valve in Cetop 03 size with a "soft shift" option (G3). A special solenoid type permits a multiple increase in the standard solenoid response time.

The Option G3 delivers:

- Reduced pressure shocks in venting operations.
- Reduced system noise during spool transition.
- Increased lifetime of the valve and system.

Pressure shift sequence of spool stroke $o \rightarrow a$ or $o \rightarrow b$

Response times (ms) for 24 V DC Solenoid

	t_{1}	t_{2}	t_{3}	t_{4}
Spool stroke	$35 \ldots 40$	$55 \ldots 60$	$300 \ldots 500$	$400 \ldots 800$
Pressure change	$20 \ldots 25$	$35 \ldots 40$	$80 \ldots 200$	$80 \ldots 400$
Note: Response time will be influenced by changes in viscosity, pressure or flow.				

Ordering code:
Solenoid voltage and current
GOR = 12 VDC
$G O Q=24 V D C$
$\mathrm{GOH}=48 \mathrm{VDC}$
With rectifier ${ }^{1}$)

DC-Output
GAN $=102$ VDC
$G A G=205 \mathrm{VDC}$
AC-Input
115 V / 50 (60) Hz
230 V / 50 (60) Hz
GAR $=98 \mathrm{VDC}$

$$
110 \mathrm{~V} / 50 \text { (60) Hz }
$$

Modification

G3 $=$ soft shift
${ }^{1}$) For applications with AC input voltage a DC solenoid with rectifier connector must be used!
Depending on spool type, the functional limits of the soft shift valve will be reduced with as much as 25% in comparison to the data in this bulletin.

Note: Ensure that the solenoid tube cartridges are filled with oil at all times. For that the tube cartridges have venting screws (see above). In applications above the oil level, the use of a check valve $1 . . .2$ bar in the tank line is recommended.

1 SOLENOID VERSION WITH POSITION CONTROL

CHARACTERISTICS FOR THE INDUCTIVE DETECTOR

DIMENSIONS

- Function
- Supply voltage Us (full wave bridge with capacitor)
- Reverse polarity protection
- Ripple voltage
- Current consumption
- Outputs
- Output voltage
- Signal L
- Signal 0
- Output current
- Environmental protection
- Operating temperature range
- Wire cross-sectional area
- Tensile strength of transmitting conduit
- C \in Declaration of conformity no.

P-channel FET, contact positive $24 \mathrm{~V} \pm 20 \%$ (19.2 V... 28.8 V)
max. 300 V installed 10\%
approx. 40 mA
NC contact positive (no short circuit protection)

Us -2.5 V
$<1.8 \mathrm{~V}$
$<400 \mathrm{~mA}$ at $\mathrm{U}_{\mathrm{s}}+20 \%$
IP 65
$0^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
$4 \times 0.5 \mathrm{~mm}^{2}$
p dyn. 315 bar
0002002993

Attention:
EMC only ensured when using screened cables and screened plug casing!

Block diagram and connection of the inductive detector

Socket connector

Example: 4D01-*1**-01SA/SB

Spool Positions 01/06

Neutral position controlled +

4D01-*1**-01SA

4D01-*1**-06SA

End position controlled +

4D01-*1**-01SB

4D01-*1**-06SB

Neutr. Pos.: Out $1=$ L

Pos. $1=$ Neutral position
Pos. $2=$ Switch point
Pos. $3=$ End position

Neutral position controlled +

End position controlled +

4D01-*1**-02SB

4D01-*1**-05SB

Pos. $1=$ Neutral position
Pos. $2=$ Switch point
Pos. $3=$ End position

CHARACTERISTICS FOR THE INDUCTIVE DETECTOR

- Function
- Supply voltage Us (full wave bridge with capacitor)
- Reverse polarity protection
- Ripple voltage
- Current consumption
- Outputs
- Output voltage
- Signal L
- Signal 0
- Output current
- Environmental protection
- Operating temperature range
- Wire cross-sectional area
- Tensile strength of transmitting conduit
- (\in Declaration of conformity no.

P-channel FET, contact positive $24 \mathrm{~V} \pm 20 \%$ (19.2 V... 28.8 V)
max. 300 V installed 10\%
approx. 40 mA
NC contact positive (no short circuit protection)

Us -2.5 V
$<1.8 \mathrm{~V}$
$<400 \mathrm{~mA}$ at $\mathrm{U}_{\mathrm{s}}+20 \%$
IP 65
$0^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
$4 \times 0.5 \mathrm{~mm}^{2}$
p dyn. 315 bar
0002002993

Attention:

EMC only ensured when using screened cables and screened plug casing!

Block diagram and connection of the inductive detector

Socket connector

Spool Position 03

Neutral position controlled \pm \qquad

4D01-32**-03SA

$\begin{array}{ll}\text { Sol. b energized: Out } 2=0 \\ \text { Neutr. Pos.: } & \text { Out } 1+2=\mathrm{L}\end{array}$
$\begin{array}{ll}\text { Neutr. Pos.: } & \text { Out } 1+2=\mathrm{L} \\ \text { Sol. a energized: } & \text { Out } 1=0\end{array}$

End position controlled \pm \qquad

4D01-32**-03SC
 $\begin{array}{ll}\text { Sol. b energized: } & \text { Out } 2=0 \\ \text { Neutr. Pos.: } & \text { Out } 1+2=\mathrm{L}\end{array}$ Sol. a energized: Out $1=0$

Pos. $1=$ Neutral position
Pos. $2=$ Switch point
Pos. $3=$ End position

Spool Position 03

Neutral position controlled \pm

4D01-32**-03TA

End position controlled \pm

\qquad

$\begin{array}{ll}\text { Sol. b energized: Out } 1=0 \\ \text { Neutr. Pos.: } & \text { Out } 1+2=1\end{array}$
Sol. a energized: Out $2=0$

Pos. $1=$ Neutral position
Pos. $2=$ Switch point
Pos. $3=$ End position

LEVER OPERATED VERSION

- Functional Limits (at 350 bar)
- Operating force
- Angle of operation
- Max. tank pressure
- Weight
bar
1.7 kg

Port function
$\mathrm{P}=$ Pressure
$\mathrm{T}=$ Tank
$A+B=$ User

NBR-Seals for ports P, A, B, T

CAM OPERATED VERSION

- Functional Limits (at 350 bar)
- Operating force $\mathrm{F}(\mathrm{N})^{1}$)
at operating pressure
100 bar
200 bar 350 bar
$60 \mathrm{l} / \mathrm{min}$ for spools $01,02,03,08,09,10,11,46,51,55,56,81,91,0 \mathrm{C}$
10 l/min for spools 12, 52
$35 \mathrm{I} / \mathrm{min}$ for spools $07,64,65,0 Y, 0 X$

at tank pressure 0 bar		
neutral	working stroke	total stroke
35 N	135 N	195 N
35 N	155 N	195 N
35 N	175 N	195 N

35 N 175 N 195 N
at tank pressure 20 bar

neutral	working stroke	total stroke
60 N	160 N	220 N
60 N	180 N	220 N
60 N	200 N	220 N

${ }^{1}$) depending on operating and tank pressure at max. flow

- Max. tank pressure
20 bar
- Weight

Port function
$\mathrm{P}=$ Pressure
$\mathrm{T}=$ Tank
$A+B=$ User

NBR-Seals for ports P, A, B, T

- Functional Limits (at 350 bar)
- Pilot pressure
- tank pressure 0 bar
- tank pressure 160 bar
- max. allowed 12 bar
- Tank pressure max. 160 bar
- Pilot volume 3.2 cm 3
- Response time ${ }^{1)}$
- on
$50 \ldots 200 \mathrm{~ms}$
- off
100... 200 ms
${ }^{1)}$ depending on pilot pressure and pipe length
- Weight
- operated one side $\quad 1.7 \mathrm{~kg}$
- operated both sides $\quad 2.3 \mathrm{~kg}$

Port function

$P=$ Pressure
T = Tank
$A+B=$ User
$X+Y=$ Pilot ports

NBR-Seals for ports P, A, B, T

9.25×1.78	$691-00012-0$

- Functional Limits (at 350 bar)
- Max. tank pressure
- Pilot pressure
$60 \mathrm{l} / \mathrm{min}$ for spools $01,02,03,08,09,10$ $11,46,51,55,56,81,91,0 C$
$10 \mathrm{l} / \mathrm{min}$ for spools 12,52
$35 \mathrm{I} / \mathrm{min}$ for spools 07, 64, 65, 0Y, 0X
160 bar
min. 10 bar $>$ tank pressure max. 210 bar
- Pilot volume (each side)
- Response time ${ }^{1)}$
- on
$50 \ldots 100 \mathrm{~ms}$
$60 \ldots 160 \mathrm{~ms}$

6. 160 ms
${ }^{1)}$ depending on pilot pressure and pipe length

- Weight
- operated one side $\quad 1.6 \mathrm{~kg}$
- operated both sides 2.2 kg

Port function

$\mathrm{P}=$ Pressure
$\mathrm{T}=$ Tank
$A+B=$ User
$X+Y=$ Pilot ports

NBR-Seals for ports P, A, B, T

MOUNTING CONFIGURATION (conform to ISO 4401)

Block mounting

Flatness 0.01 mn Surface finish 0,8

For valves ordered without subplate, mounting screws must be ordered separately.

4-Mounting screws	Order-No.
M 5×30, DIN 912; 10.9	$700-70834-8$
$10-24$ UNC-2A $\times 1^{1 / 4^{\prime \prime}}$ (SAE)	$358-10183-8$

Torque 8.3 Nm

SUBPLATES

1/2" Subplate

Model no.	Order no.	Weight	$d_{1}(A, B, P, T)$	d_{2}	Thread for mount. screws d_{3}
SS-B-04-G 136	S26-32959-0	1.4 kg	$\mathrm{G}^{1 / 4^{\prime \prime}}$	$\varnothing 23 \times 1$	M 5
SS-B-06-G 136	S26-32960-0	1.4 kg	$\mathrm{G}^{3} / 8^{\prime \prime}$	$\varnothing 26 \times 1$	M 5
SS-B-08-G 136	S26-32961-0	1.7 kg	$\mathrm{G}^{1 / 2^{\prime \prime}}$	$\varnothing 31 \times 1$	M 5

Mounting screws are included in subplate order.

